
DAA PYQ Final

Illustration of Bounding Function in Backtracking

A bounding function in backtracking is a way to prune the search tree, preventing the
exploration of nodes that cannot possibly lead to a solution. It helps optimize the backtracking
process by discarding branches that are unlikely to yield an optimal or feasible solution. This
is achieved by using a heuristic or a lower/upper bound to estimate the cost or value of a
solution at a certain point in the search tree. If a node's bound is not better than the best solution
found so far, it is discarded, and the algorithm explores other branches.

e) Examine the shortcomings of the Dijkstra's Algorithm.

 1. Does Not Work with Negative Edge Weights

 Why? Dijkstra assumes that once a node’s shortest distance is finalized, it won’t
change.

 Problem: Negative edge weights can lead to shorter paths after a node has been
finalized.

 2. Inefficient for Large Sparse Graphs (Without Heap)

 If implemented with an adjacency matrix and no priority queue, its time complexity is
O(V²).

 In large sparse graphs, this becomes inefficient.

 3. Cannot Handle Negative Weight Cycles

 If the graph contains negative cycles, Dijkstra doesn't detect them and may return
incorrect paths.

 4. Only Works for Single Source

 Dijkstra solves single-source shortest path problems.

 5. Path Reconstruction Requires Extra Effort

 The basic version only computes distances.

 To get the actual path, you must track parent or predecessor nodes.

 6. Greedy Nature Can Mislead in Some Scenarios

 The algorithm is greedy, which means it might make decisions that seem best locally
but aren't optimal globally in more complex situations (e.g., time-dependent graphs).

a) What is an algorithm and Describe the characteristics of algorithm.

An algorithm is a finite set of well-defined instructions used to solve a problem or perform
a specific task.

꺎꺌꺍 Key Characteristics of an Algorithm:

1. Input:

o Takes zero or more inputs.

2. Output:

o Produces at least one output.

3. Definiteness:

o Each step is clear and unambiguous.

4. Finiteness:

o It must terminate after a finite number of steps.

5. Effectiveness:

o Each step must be basic enough to be performed exactly and in a finite time.

궀궔궂궃 Example:

Problem: Find the sum of two numbers.

Algorithm:

1. Start

2. Input two numbers, A and B

3. Add A and B, store in S

4. Output S

5. Stop

Define dynamic programming and explain its significance in algorithm design. How does
it differ from other algorithm design techniques?

꼟 Definition of Dynamic Programming (DP):

Dynamic Programming is a method used to solve complex problems by breaking them into
smaller overlapping subproblems, solving each subproblem only once, and storing their
results (usually in a table or array) to avoid redundant work.

DP is applicable when a problem has:

1. Optimal substructure (solution of the main problem can be constructed from solutions
of subproblems)

2. Overlapping subproblems (same subproblems are solved multiple times)

궀궔궂궃 Example: Fibonacci Numbers

 Naive recursive solution:
Time complexity = O(2ⁿ) due to repeated calculations.

 Dynamic Programming (bottom-up or memoization):
Time complexity = O(n)
→ Because each subproblem is solved only once and stored.

꺎꺌꺍 Significance of Dynamic Programming in Algorithm Design:

 Efficiency:
Avoids redundant computations, dramatically reducing time complexity.

 Deterministic Solutions:
Unlike greedy algorithms, DP guarantees an optimal solution when applicable.

 Widely Applicable:
Used in:

o Shortest paths (e.g., Floyd-Warshall)

o Sequence alignment (bioinformatics)

o Knapsack problems

o Matrix chain multiplication

o Game theory and decision making

脥깩깪 Comparison with Other Techniques:

Technique Key Idea
Reuses
Subproblems?

Guarantees
Optimal?

Brute Force Try all possibilities No
脥� Yes (but
inefficient)

Divide & Conquer
Break problem into
independent subproblems

 No 脥� Sometimes

Greedy
Make locally optimal choice at
each step

 No Not always

Dynamic
Programming

Store solutions of overlapping
subproblems

脥� Yes 脥� Yes

How Can You Prove a Problem to Be NP-Complete?

To prove a problem is NP-Complete, you must follow two main steps. This involves showing
that:

꼡 Step 1: The Problem is in NP

You must show that:

 Given a candidate solution, you can verify it in polynomial time.

굓굔굕굖 Example:For the Subset Sum problem, if someone gives you a subset, you can easily sum
its elements and check if it matches the target — this verification is polynomial-time.

꼡 Step 2: NP-Hardness — Reduce a Known NP-Complete Problem to Your Problem

You must:

 Take a known NP-complete problem, and

 Show that it can be polynomially reduced to your problem.

This means:"If we could solve your problem efficiently, then we could solve the known NP-
complete problem efficiently too."

This step proves that your problem is at least as hard as any problem in NP.

d) What is the difference between polynomial and exponential running time?

Aspect Polynomial Running Time Exponential Running Time

Definition
Time complexity expressed as n^k
for some constant k (e.g., n, n², n³)

Time complexity expressed as c^n
where c > 1 (e.g., 2^n, 3^n)

Growth Rate
Grows slowly as input size n
increases

Grows very fast as input size n
increases

Examples O(n), O(n²), O(n³) O(2^n), O(3^n), O(2^{n/2})

Feasibility
Generally feasible for reasonably
large n

Generally infeasible even for
moderate n

Algorithm Type
Efficient algorithms (e.g., sorting,
searching)

Brute force, exhaustive search
algorithms

Impact on
Computation

Computation time increases
moderately

Computation time becomes
impractically large quickly

Use in Practice Preferred for large-scale problems
Often used in small input cases or
theoretical study

e) What is the time complexity of algorithm finding all pair shortest path?

b) Which Big-O notation has the worst time complexity?

굅굃굆 Common Big-O Notations (Ordered from Best to Worst):

1. O(1) – Constant time

2. O(log n) – Logarithmic time

3. O(n) – Linear time

4. O(n log n) – Linearithmic time

5. O(n²) – Quadratic time

6. O(n³) – Cubic time

7. O(2^n) – Exponential time

8. O(n!) – Factorial time (very slow)

 Worst Time Complexity: O(n!)

 This occurs in problems where you must generate all permutations of n items.

 Examples:

o Traveling Salesman Problem (TSP) (brute-force approach)

o Solving puzzles using exhaustive search

꼢 Even worse than exponential!

If n = 20, then:

 2^n = 1,048,576

 n! = 2,432,902,008,176,640,000 ← much worse!

f) Explain Graph-coloring problem.

Given an undirected graph G=(V,E)G = (V, E)G=(V,E), assign a color to each vertex in V such
that:

 If (u,v)∈E then color(u) ≠ color(v)

 Use the minimum number of colors possible.

脥� Example:

Consider a triangle graph with 3 vertices (each connected to the other):

 You need 3 different colors so that no adjacent vertices share the same color.

2m and 4m) Definition and Significance of Big-O, Omega, and Theta Notations

꼡 1. Big-O Notation (O)

궀궔궂궃 Definition:

Big-O represents the upper bound of an algorithm's growth rate. It tells us the maximum time
or space the algorithm could take.

f(n) = O(g(n)) means that f(n) grows no faster than g(n), up to constant factors.

虌虇虈虉虊虋 Significance:

 Describes the worst-case performance.

 Ensures that performance will not degrade beyond a certain limit.

 Helps compare different algorithms' scalability.

��� Example:If an algorithm is O(n²), it means in the worst case, its time grows proportionally
to n2n^2n2.

꼡 2. Omega Notation (Ω)

궀궔궂궃 Definition:

Omega represents the lower bound of an algorithm's growth rate. It tells us the minimum time
or space required.

f(n) = Ω(g(n)) means that f(n) grows at least as fast as g(n).

虌虇虈虉虊虋 Significance:

 Describes the best-case performance.

 Helps understand the fastest an algorithm could possibly perform.

��� Example:For linear search, Ω(1) implies that in the best case, the item is found in the first
position.

꼡 3. Theta Notation (Θ)

궀궔궂궃 Definition:

Theta provides a tight bound, meaning the algorithm grows exactly at the rate of a given
function (both upper and lower bounds).

f(n) = Θ(g(n)) means that f(n) grows at the same rate as g(n).

虌虇虈虉虊虋 Significance:

 Describes the average-case or exact performance.

 Gives a precise measure of an algorithm’s efficiency.

��� Example:Merge sort takes Θ(n log n) time in all cases, so it's consistently efficient.

State and explain Cook's theorem.
Formally:
“Every problem in the complexity class NP can be polynomial-time reduced to the SAT
problem.”

This means that:

SAT is the first known NP-Complete problem.

꺎꺌꺍 What is SAT (Satisfiability Problem)?

 Given a Boolean formula (e.g., in CNF form), determine if there exists a truth
assignment to variables that makes the formula evaluate to true.

궀궔궂궃 Explanation of Cook’s Theorem:

1. SAT ∈ NP

 It is easy to verify if a given truth assignment satisfies the Boolean formula — in
polynomial time.

2. SAT is NP-Hard

 Cook showed that for any problem in NP, its computation (by a non-deterministic
Turing machine) can be encoded as a SAT instance in polynomial time.

 So, solving SAT would allow us to solve any NP problem.

e) Are Merge Sort and Quick Sort stable sorts? Justify your answer

꼠 1. Merge Sort 脥� Stable

 Reason:
Merge Sort compares elements in order and when two elements are equal, it chooses
the one that appeared first in the original list (from the left half).

 Therefore:
It preserves the original relative order of equal elements.

 Conclusion:

脥� Merge Sort is a stable sort.

꼠 2. Quick Sort Not Stable

 Reason:
Quick Sort may swap elements that are far apart, especially during partitioning.

o It does not guarantee the relative order of equal elements.

 Example:
Original:
[(John, 25), (Jane, 25)]
After Quick Sort:
[(Jane, 25), (John, 25)] ← order changed

 Conclusion:

 Quick Sort is not stable in its standard form.

Suppose you have an O(n) time algorithm that finds the median of an unsorted array. Now
consider a QuickSort implementation where we first find the median using the above algorithm,
then use the median as a pivot. What will be the worst-case time complexity of this modificd
QuickSort? Justify your answer.

꼡 Given:

 We have an O(n) time algorithm to find the median of an unsorted array.

 We modify QuickSort to:

o First find the median (O(n)),

o Then use it as the pivot.

꼡 Objective:

Determine the worst-case time complexity of this modified QuickSort.

꺎꺌꺍 Standard QuickSort Recap:

 Worst-case occurs when pivot selection is poor (e.g., smallest/largest element).

 Standard worst-case time:O(n2)

꼠 Modified QuickSort with Median Pivot:

By choosing the true median as the pivot:

 The array is always perfectly split into two halves of size ≈ n/2

 So, the recurrence relation becomes:

This recurrence solves to:

T(n)=O(nlogn)

꼡 脥� Justification:

 Finding the median takes O(n) time.

 Partitioning takes O(n) time.

 The subproblems are balanced (each half has ≈ n/2n/2n/2 elements).

 Solving this recurrence gives:

O(nlogn)

脥� Final Answer:

The worst-case time complexity of the modified QuickSort using the median as pivot is O(n
log n).

This improvement makes QuickSort’s worst-case as good as its average-case!

a) Providc a scenario where understanding asymptotic notations is crucial for designing and
analyzing algorithms effectively.

꼟 Scenario: Choosing an Algorithm for Sorting Large Data Sets

Imagine you're building a real-time dashboard that processes and displays live data from
millions of users, and you need to sort this incoming data frequently.

You have two algorithm choices:

1. Algorithm A: Has time complexity O(n²)

2. Algorithm B: Has time complexity O(n log n)

꺎꺌꺍 Why Asymptotic Notation Matters:

Even if Algorithm A runs faster for small inputs due to a simpler implementation, it becomes
unusable for large inputs due to the quadratic growth in time.

Let's assume n = 1,000,000:

굓굔굕굖 Key Takeaway:

Understanding asymptotic notations allows engineers to:

 Predict scalability

 Choose the right algorithm

 Avoid writing code that works well in testing but fails in production

4Marks

 Appraise the importance of using greedy method and relaxing the condition of xi 0 or I to 0 xi
1 while computing optimal solution for 0/1 Knapsack problem using a recursive backtracking
algorithm.

꼟 Background: 0/1 Knapsack Problem

Given:

 A set of nnn items, each with a weight wiw_iwi and value viv_ivi.

 A knapsack capacity WWW.

Goal:
Maximize the total value such that the total weight doesn’t exceed WWW, and each item is
either included (1) or excluded (0).

This is a combinatorial optimization problem, and backtracking can be used to explore all
valid combinations.

굓굔굕굖 Part 1: Using the Greedy Method in Backtracking

꺎꺌꺍 Why Use the Greedy Method?

 The Greedy approach (selecting items based on highest value/weight ratio) does not
always give optimal results for the 0/1 Knapsack problem, but it is still useful as a
heuristic.

脥� Role in Backtracking:

 When recursively exploring solutions, the greedy solution can provide an upper bound
on the best possible solution in a branch.

 This allows us to prune branches early in the recursion (via bounding function),
reducing computation.

꼡 Conclusion:Using greedy estimates improves efficiency by guiding the backtracking
algorithm to explore promising branches first and ignore hopeless ones.

굓굔굕굖 Part 2: Relaxing the Condition xi∈{0,1}x_i \in \{0,1\}xi∈{0,1} to 0≤xi≤10 \leq x_i \leq
10≤xi≤1

꺎꺌꺍 Why Relax the Condition?

 In 0/1 Knapsack, each item must be fully included or excluded.

 By relaxing the constraint to allow fractional items, we turn it into the Fractional
Knapsack Problem, which can be solved optimally using a greedy algorithm in O(n
log n) time.

脥� Significance in Backtracking:

 This relaxed version provides a tight upper bound on the value possible from the
current point onward.

 It allows the recursive algorithm to estimate the maximum gain in each branch, even
if full items can't be included.

 If this estimate is less than the best solution found so far, the branch can be safely
pruned.

꼡Conclusion:
Relaxing the constraint gives a fast, optimistic bound used in pruning, improving search
efficiency without compromising optimality.

��� Overall Importance:

Technique Purpose Benefit

Greedy method
(value/weight)

Provides quick estimate of best
gain

Helps in prioritizing and
pruning

Relaxing xi∈[0,1]x_i \in
[0,1]xi∈[0,1]

Allows use of fractional items
for bounding

Tight upper bounds → faster
pruning

Q4.Differentiate Divide-and-Conquer and Greedy Method.

Feature Divide and Conquer Greedy Method

Approach
Divides problem into subproblems
and solves recursively

Makes locally optimal choices at
each step

Problem Solving Break → Solve → Combine Build solution step-by-step

Recursion Uses recursion heavily Typically iterative

Subproblem
Dependency

Subproblems are independent
Subproblems are not always
independent

Global Optimality
Ensures optimal solution by
solving all parts

May not guarantee globally optimal
solution

Examples
Merge Sort, Quick Sort, Binary
Search, Strassen’s Matrix

Prim’s Algorithm, Kruskal’s
Algorithm, Fractional Knapsack

Complexity Often O(n log n) (e.g., merge sort) Often faster, sometimes O(n)

Combine Step Required to merge sub-solutions
No combine step — solution is built
on the go

Define backtracking and explain its significance in algorithm design. How does
backtracking differ from other algorithmic techniques?

꼡 Definition of Backtracking:

Backtracking is a general algorithmic technique used to solve constraint satisfaction problems
by exploring all possible solutions and abandoning those paths that lead to an invalid or
suboptimal solution.

It's a depth-first search approach where decisions are made step-by-step, and if a path fails, the
algorithm "backtracks" to try a different choice.

껩 How Backtracking Works:

1. Choose an option.

2. Recur to see if this leads to a solution.

3. If it doesn't, undo the choice (backtrack) and try another option.

虌虇虈虉虊虋 Significance in Algorithm Design:

 Solves problems with combinatorial complexity where brute-force would be too slow.

 Helps in finding all or best possible solutions.

 Efficient when combined with pruning (i.e., skipping impossible paths early).

궀궔궂궃 Common Problems Solved by Backtracking:

 N-Queens Problem

 Sudoku Solver

 Graph Coloring

 Hamiltonian Cycle

 Subset Sum / Combinatorial Optimization

꺎꺌꺍 Difference from Other Algorithmic Techniques:

Feature Backtracking
Divide &
Conquer

Dynamic
Programming

Greedy Method

Exploration
Tries all possible
options

Divides into
independent
subproblems

Stores and reuses
solutions

Picks best local
solution

Recursive?
Yes (depth-first
search)

Yes Yes Not necessarily

Feature Backtracking
Divide &
Conquer

Dynamic
Programming

Greedy Method

Optimization
Type

Optimal / all
solutions

Exact solutions
Optimal
substructure
problems

Often not optimal

Use of
Memory

Stack (recursive
calls)

Stack + merges
Table
(memoization)

Minimal

Efficiency
Slower unless
optimized with
pruning

Medium
Efficient if
overlapping
subproblems exist

Very fast (but may
not give optimal
solution)

What are the characteristics of a good approximation' algorithm?

1. Performance Guarantee:
The algorithm provides a known bound on how close the solution is to the optimal
one. This is often expressed as an approximation ratio or factor.

2. Polynomial Time Complexity:
It should run in polynomial time, making it efficient and practical for large inputs.

3. Simplicity:
The algorithm should be relatively simple to understand and implement.

4. Scalability:
It should work well as the size of the input grows, maintaining reasonable accuracy
and performance.

5. Deterministic or Probabilistic Guarantees:
It either always guarantees a certain quality of solution or does so with high
probability.

6. Good Practical Performance:
Beyond theoretical guarantees, the algorithm should perform well on real-world
instances.

7. Robustness:
It should handle a variety of input types and still provide a good approximation.

Implement and demonstrate binary search algorithm to find the position of the element
35 in the array [5, 10, 15, 20, 25, 30, 35, 40, 45, 50].

Support the statement that an opƟmizaƟon problem cannot be NP-complete whereas a decision
problem can be NP-complete.

To support the statement:

“An opƟmizaƟon problem cannot be NP-complete, whereas a decision problem can be NP-
complete,”
we need to understand the definiƟons and requirements of NP-completeness.

1. NP-complete problems

A problem is NP-complete if:

 It is in NP (i.e., a yes answer can be verified in polynomial Ɵme).

 It is NP-hard (i.e., every problem in NP can be reduced to it in polynomial Ɵme).

But this definiƟon only applies to decision problems.

2. OpƟmizaƟon problem vs. Decision problem

 OpƟmizaƟon problem: Asks for the best soluƟon (e.g., shortest path, maximum profit).
Example: What is the shortest route that visits every city once? (Traveling Salesman Problem
— OpƟmizaƟon version)

 Decision problem: Asks a yes/no quesƟon about the soluƟon.
Example: Is there a route that visits every city once with total distance ≤ k? (Traveling
Salesman Problem — Decision version)

3. Why opƟmizaƟon problems cannot be NP-complete

 VerificaƟon in polynomial Ɵme: To be in NP, a problem must allow verificaƟon of a yes answer
in polynomial Ɵme.

 OpƟmizaƟon problems do not have a yes/no answer; they require finding the best among
many possible answers.

 Hence, they do not fit into the NP framework, because there's no single answer to verify in
a yes/no fashion.

4. But decision problems can be NP-complete

 They fit the NP-completeness definiƟon:

o A "yes" soluƟon can be checked quickly (in polynomial Ɵme).

o Many hard problems reduce to them.

Conclusion

An opƟmizaƟon problem cannot be NP-complete because NP-completeness only applies to decision
problems, which are yes/no quesƟons. OpƟmizaƟon problems are oŌen NP-hard but not NP-
complete, because they don’t fall within the NP class due to their output format

a. Analyse and outline the difference between dynamic programming and backtracking. (6 marks)

Difference Between Dynamic Programming and Backtracking

Aspect Dynamic Programming (DP) Backtracking

Purpose

Solves problems by breaking them
into overlapping subproblems and
storing results to avoid
recomputaƟon.

Explores all possible soluƟons by trying out
all opƟons and discarding invalid ones.

Approach
BoƩom-up or top-down with
memoizaƟon; builds soluƟons from
smaller subproblems.

Top-down; incrementally builds candidates
and abandons those that fail constraints.

Aspect Dynamic Programming (DP) Backtracking

OpƟmal
Substructure

Requires the problem to have opƟmal
substructure property (opƟmal
soluƟon composed of opƟmal
subsoluƟons).

Does not necessarily require opƟmal
substructure; explores all paths.

Overlapping
Subproblems

Efficiently handles overlapping
subproblems by caching intermediate
results.

Does not reuse previously computed
soluƟons; may recompute subproblems
repeatedly.

Use case
Mainly used for opƟmizaƟon
problems (e.g., shortest path,
knapsack).

Used for constraint saƟsfacƟon problems
and combinatorial search (e.g., puzzles,
permutaƟons).

Time
complexity

Generally polynomial (if the problem
has limited subproblems).

PotenƟally exponenƟal, as it tries all
possibiliƟes unless pruned.

Example
problems

Fibonacci series, matrix chain
mulƟplicaƟon, knapsack problem.

N-Queens, Sudoku solver, generaƟng
permutaƟons/combinaƟons.

Solve these quesƟons by rivision of discrete mathemaƟcs, you can go through the notes of discrete
mathemaƟcs and rivision the recurrence relaƟon part, not a big deal, you know, you can go through
only basics and you will be able to solve these quesƟons.

