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Illustration of Bounding Function in Backtracking 

A bounding function in backtracking is a way to prune the search tree, preventing the 
exploration of nodes that cannot possibly lead to a solution. It helps optimize the backtracking 
process by discarding branches that are unlikely to yield an optimal or feasible solution. This 
is achieved by using a heuristic or a lower/upper bound to estimate the cost or value of a 
solution at a certain point in the search tree. If a node's bound is not better than the best solution 
found so far, it is discarded, and the algorithm explores other branches.  

e) Examine the shortcomings of the Dijkstra's Algorithm. 

 1. Does Not Work with Negative Edge Weights 

 Why? Dijkstra assumes that once a node’s shortest distance is finalized, it won’t 
change. 

 Problem: Negative edge weights can lead to shorter paths after a node has been 
finalized. 

 2. Inefficient for Large Sparse Graphs (Without Heap) 

 If implemented with an adjacency matrix and no priority queue, its time complexity is 
O(V²). 

 In large sparse graphs, this becomes inefficient. 

 3. Cannot Handle Negative Weight Cycles 

 If the graph contains negative cycles, Dijkstra doesn't detect them and may return 
incorrect paths. 

 4. Only Works for Single Source 

 Dijkstra solves single-source shortest path problems. 

 5. Path Reconstruction Requires Extra Effort 

 The basic version only computes distances. 

 To get the actual path, you must track parent or predecessor nodes. 

 6. Greedy Nature Can Mislead in Some Scenarios 

 The algorithm is greedy, which means it might make decisions that seem best locally 
but aren't optimal globally in more complex situations (e.g., time-dependent graphs). 

a) What is an algorithm and Describe the characteristics of algorithm. 

An algorithm is a finite set of well-defined instructions used to solve a problem or perform 
a specific task. 

꺎꺌꺍 Key Characteristics of an Algorithm: 



1. Input: 

o Takes zero or more inputs. 

2. Output: 

o Produces at least one output. 

3. Definiteness: 

o Each step is clear and unambiguous. 

4. Finiteness: 

o It must terminate after a finite number of steps. 

5. Effectiveness: 

o Each step must be basic enough to be performed exactly and in a finite time. 

궀궔궂궃 Example: 

Problem: Find the sum of two numbers. 

Algorithm: 

1. Start 

2. Input two numbers, A and B 

3. Add A and B, store in S 

4. Output S 

5. Stop 

Define dynamic programming and explain its significance in algorithm design. How does 
it differ from other algorithm design techniques? 

꼟 Definition of Dynamic Programming (DP): 

Dynamic Programming is a method used to solve complex problems by breaking them into 
smaller overlapping subproblems, solving each subproblem only once, and storing their 
results (usually in a table or array) to avoid redundant work. 

DP is applicable when a problem has: 

1. Optimal substructure (solution of the main problem can be constructed from solutions 
of subproblems) 

2. Overlapping subproblems (same subproblems are solved multiple times) 

궀궔궂궃 Example: Fibonacci Numbers 

 Naive recursive solution: 
Time complexity = O(2ⁿ) due to repeated calculations. 



 Dynamic Programming (bottom-up or memoization): 
Time complexity = O(n) 
→ Because each subproblem is solved only once and stored. 

꺎꺌꺍 Significance of Dynamic Programming in Algorithm Design: 

 Efficiency: 
Avoids redundant computations, dramatically reducing time complexity. 

 Deterministic Solutions: 
Unlike greedy algorithms, DP guarantees an optimal solution when applicable. 

 Widely Applicable: 
Used in: 

o Shortest paths (e.g., Floyd-Warshall) 

o Sequence alignment (bioinformatics) 

o Knapsack problems 

o Matrix chain multiplication 

o Game theory and decision making 

脥깩깪 Comparison with Other Techniques: 

Technique Key Idea 
Reuses 
Subproblems? 

Guarantees 
Optimal? 

Brute Force Try all possibilities  No 
脥� Yes (but 
inefficient) 

Divide & Conquer 
Break problem into 
independent subproblems 

 No 脥� Sometimes 

Greedy 
Make locally optimal choice at 
each step 

 No  Not always 

Dynamic 
Programming 

Store solutions of overlapping 
subproblems 

脥� Yes 脥� Yes 

How Can You Prove a Problem to Be NP-Complete? 

To prove a problem is NP-Complete, you must follow two main steps. This involves showing 
that: 

꼡 Step 1: The Problem is in NP 

You must show that: 

 Given a candidate solution, you can verify it in polynomial time. 



굓굔굕굖 Example:For the Subset Sum problem, if someone gives you a subset, you can easily sum 
its elements and check if it matches the target — this verification is polynomial-time. 

꼡 Step 2: NP-Hardness — Reduce a Known NP-Complete Problem to Your Problem 

You must: 

 Take a known NP-complete problem, and 

 Show that it can be polynomially reduced to your problem. 

This means:"If we could solve your problem efficiently, then we could solve the known NP-
complete problem efficiently too." 

This step proves that your problem is at least as hard as any problem in NP. 

d) What is the difference between polynomial and exponential running time? 

Aspect Polynomial Running Time Exponential Running Time 

Definition 
Time complexity expressed as n^k 
for some constant k (e.g., n, n², n³) 

Time complexity expressed as c^n 
where c > 1 (e.g., 2^n, 3^n) 

Growth Rate 
Grows slowly as input size n 
increases 

Grows very fast as input size n 
increases 

Examples O(n), O(n²), O(n³) O(2^n), O(3^n), O(2^{n/2}) 

Feasibility 
Generally feasible for reasonably 
large n 

Generally infeasible even for 
moderate n 

Algorithm Type 
Efficient algorithms (e.g., sorting, 
searching) 

Brute force, exhaustive search 
algorithms 

Impact on 
Computation 

Computation time increases 
moderately 

Computation time becomes 
impractically large quickly 

Use in Practice Preferred for large-scale problems 
Often used in small input cases or 
theoretical study 

e) What is the time complexity of algorithm finding all pair shortest path? 

 

 



 

 

 

 

 

 

 

b) Which Big-O notation has the worst time complexity? 

굅굃굆 Common Big-O Notations (Ordered from Best to Worst): 

1. O(1) – Constant time 

2. O(log n) – Logarithmic time 

3. O(n) – Linear time 

4. O(n log n) – Linearithmic time 

5. O(n²) – Quadratic time 

6. O(n³) – Cubic time 

7. O(2^n) – Exponential time 

8. O(n!) – Factorial time (very slow) 

 Worst Time Complexity: O(n!) 

 This occurs in problems where you must generate all permutations of n items. 

 Examples: 

o Traveling Salesman Problem (TSP) (brute-force approach) 

o Solving puzzles using exhaustive search 

꼢 Even worse than exponential! 



If n = 20, then: 

 2^n = 1,048,576 

 n! = 2,432,902,008,176,640,000 ← much worse! 

f) Explain Graph-coloring problem. 

Given an undirected graph G=(V,E)G = (V, E)G=(V,E), assign a color to each vertex in V such 
that: 

 If (u,v)∈E then color(u) ≠ color(v) 

 Use the minimum number of colors possible. 

脥� Example: 

Consider a triangle graph with 3 vertices (each connected to the other): 

 You need 3 different colors so that no adjacent vertices share the same color. 

2m and 4m) Definition and Significance of Big-O, Omega, and Theta Notations 

꼡 1. Big-O Notation (O) 

궀궔궂궃 Definition: 

Big-O represents the upper bound of an algorithm's growth rate. It tells us the maximum time 
or space the algorithm could take. 

f(n) = O(g(n)) means that f(n) grows no faster than g(n), up to constant factors. 

虌虇虈虉虊虋 Significance: 

 Describes the worst-case performance. 

 Ensures that performance will not degrade beyond a certain limit. 

 Helps compare different algorithms' scalability. 

��� Example:If an algorithm is O(n²), it means in the worst case, its time grows proportionally 
to n2n^2n2. 

꼡 2. Omega Notation (Ω) 

궀궔궂궃 Definition: 

Omega represents the lower bound of an algorithm's growth rate. It tells us the minimum time 
or space required. 

f(n) = Ω(g(n)) means that f(n) grows at least as fast as g(n). 

虌虇虈虉虊虋 Significance: 

 Describes the best-case performance. 

 Helps understand the fastest an algorithm could possibly perform. 



��� Example:For linear search, Ω(1) implies that in the best case, the item is found in the first 
position. 

꼡 3. Theta Notation (Θ) 

궀궔궂궃 Definition: 

Theta provides a tight bound, meaning the algorithm grows exactly at the rate of a given 
function (both upper and lower bounds). 

f(n) = Θ(g(n)) means that f(n) grows at the same rate as g(n). 

虌虇虈虉虊虋 Significance: 

 Describes the average-case or exact performance. 

 Gives a precise measure of an algorithm’s efficiency. 

��� Example:Merge sort takes Θ(n log n) time in all cases, so it's consistently efficient. 

State and explain Cook's theorem. 
Formally: 
“Every problem in the complexity class NP can be polynomial-time reduced to the SAT 
problem.” 

This means that: 

SAT is the first known NP-Complete problem. 

꺎꺌꺍 What is SAT (Satisfiability Problem)? 

 Given a Boolean formula (e.g., in CNF form), determine if there exists a truth 
assignment to variables that makes the formula evaluate to true. 

궀궔궂궃 Explanation of Cook’s Theorem: 

1. SAT ∈ NP 

 It is easy to verify if a given truth assignment satisfies the Boolean formula — in 
polynomial time. 

2. SAT is NP-Hard 

 Cook showed that for any problem in NP, its computation (by a non-deterministic 
Turing machine) can be encoded as a SAT instance in polynomial time. 

 So, solving SAT would allow us to solve any NP problem. 

e) Are Merge Sort and Quick Sort stable sorts? Justify your answer 

꼠 1. Merge Sort 脥� Stable 

 Reason: 
Merge Sort compares elements in order and when two elements are equal, it chooses 
the one that appeared first in the original list (from the left half). 



 Therefore: 
It preserves the original relative order of equal elements. 

 Conclusion: 

脥� Merge Sort is a stable sort. 

꼠 2. Quick Sort  Not Stable 

 Reason: 
Quick Sort may swap elements that are far apart, especially during partitioning. 

o It does not guarantee the relative order of equal elements. 

 Example: 
Original: 
[(John, 25), (Jane, 25)] 
After Quick Sort: 
[(Jane, 25), (John, 25)] ← order changed 

 Conclusion: 

 Quick Sort is not stable in its standard form. 

Suppose you have an O(n) time algorithm that finds the median of an unsorted array. Now 
consider a QuickSort implementation where we first find the median using the above algorithm, 
then use the median as a pivot. What will be the worst-case time complexity of this modificd 
QuickSort? Justify your answer. 

꼡 Given: 

 We have an O(n) time algorithm to find the median of an unsorted array. 

 We modify QuickSort to: 

o First find the median (O(n)), 

o Then use it as the pivot. 

꼡 Objective: 

Determine the worst-case time complexity of this modified QuickSort. 

꺎꺌꺍 Standard QuickSort Recap: 

 Worst-case occurs when pivot selection is poor (e.g., smallest/largest element). 

 Standard worst-case time:O(n2)  

꼠 Modified QuickSort with Median Pivot: 

By choosing the true median as the pivot: 

 The array is always perfectly split into two halves of size ≈ n/2 

 So, the recurrence relation becomes: 



 

This recurrence solves to: 

T(n)=O(nlogn)  

꼡 脥� Justification: 

 Finding the median takes O(n) time. 

 Partitioning takes O(n) time. 

 The subproblems are balanced (each half has ≈ n/2n/2n/2 elements). 

 Solving this recurrence gives: 

O(nlogn)  

脥� Final Answer: 

The worst-case time complexity of the modified QuickSort using the median as pivot is O(n 
log n). 

This improvement makes QuickSort’s worst-case as good as its average-case! 

a) Providc a scenario where understanding asymptotic notations is crucial for designing and 
analyzing algorithms effectively. 

꼟 Scenario: Choosing an Algorithm for Sorting Large Data Sets 

Imagine you're building a real-time dashboard that processes and displays live data from 
millions of users, and you need to sort this incoming data frequently. 

You have two algorithm choices: 

1. Algorithm A: Has time complexity O(n²) 

2. Algorithm B: Has time complexity O(n log n) 

꺎꺌꺍 Why Asymptotic Notation Matters: 

Even if Algorithm A runs faster for small inputs due to a simpler implementation, it becomes 
unusable for large inputs due to the quadratic growth in time. 

Let's assume n = 1,000,000: 

 

굓굔굕굖 Key Takeaway: 

Understanding asymptotic notations allows engineers to: 

 Predict scalability 



 Choose the right algorithm 

 Avoid writing code that works well in testing but fails in production 

4Marks  

 Appraise the importance of using greedy method and relaxing the condition of xi 0 or I to 0 xi 
1 while computing optimal solution for 0/1 Knapsack problem using a recursive backtracking 
algorithm. 

꼟 Background: 0/1 Knapsack Problem 

Given: 

 A set of nnn items, each with a weight wiw_iwi and value viv_ivi. 

 A knapsack capacity WWW. 

Goal: 
Maximize the total value such that the total weight doesn’t exceed WWW, and each item is 
either included (1) or excluded (0). 

This is a combinatorial optimization problem, and backtracking can be used to explore all 
valid combinations. 

굓굔굕굖 Part 1: Using the Greedy Method in Backtracking 

꺎꺌꺍 Why Use the Greedy Method? 

 The Greedy approach (selecting items based on highest value/weight ratio) does not 
always give optimal results for the 0/1 Knapsack problem, but it is still useful as a 
heuristic. 

脥� Role in Backtracking: 

 When recursively exploring solutions, the greedy solution can provide an upper bound 
on the best possible solution in a branch. 

 This allows us to prune branches early in the recursion (via bounding function), 
reducing computation. 

꼡 Conclusion:Using greedy estimates improves efficiency by guiding the backtracking 
algorithm to explore promising branches first and ignore hopeless ones. 

굓굔굕굖 Part 2: Relaxing the Condition xi∈{0,1}x_i \in \{0,1\}xi∈{0,1} to 0≤xi≤10 \leq x_i \leq 
10≤xi≤1 

꺎꺌꺍 Why Relax the Condition? 

 In 0/1 Knapsack, each item must be fully included or excluded. 

 By relaxing the constraint to allow fractional items, we turn it into the Fractional 
Knapsack Problem, which can be solved optimally using a greedy algorithm in O(n 
log n) time. 



脥� Significance in Backtracking: 

 This relaxed version provides a tight upper bound on the value possible from the 
current point onward. 

 It allows the recursive algorithm to estimate the maximum gain in each branch, even 
if full items can't be included. 

 If this estimate is less than the best solution found so far, the branch can be safely 
pruned. 

꼡Conclusion: 
Relaxing the constraint gives a fast, optimistic bound used in pruning, improving search 
efficiency without compromising optimality. 

��� Overall Importance: 

Technique Purpose Benefit 

Greedy method 
(value/weight) 

Provides quick estimate of best 
gain 

Helps in prioritizing and 
pruning 

Relaxing xi∈[0,1]x_i \in 
[0,1]xi∈[0,1] 

Allows use of fractional items 
for bounding 

Tight upper bounds → faster 
pruning 

 

Q4.Differentiate Divide-and-Conquer and Greedy Method. 

Feature Divide and Conquer Greedy Method 

Approach 
Divides problem into subproblems 
and solves recursively 

Makes locally optimal choices at 
each step 

Problem Solving Break → Solve → Combine Build solution step-by-step 

Recursion Uses recursion heavily Typically iterative 

Subproblem 
Dependency 

Subproblems are independent 
Subproblems are not always 
independent 

Global Optimality 
Ensures optimal solution by 
solving all parts 

May not guarantee globally optimal 
solution 

Examples 
Merge Sort, Quick Sort, Binary 
Search, Strassen’s Matrix 

Prim’s Algorithm, Kruskal’s 
Algorithm, Fractional Knapsack 

Complexity Often O(n log n) (e.g., merge sort) Often faster, sometimes O(n) 

Combine Step Required to merge sub-solutions 
No combine step — solution is built 
on the go 



Define backtracking and explain its significance in algorithm design. How does 
backtracking differ from other algorithmic techniques? 

꼡 Definition of Backtracking: 

Backtracking is a general algorithmic technique used to solve constraint satisfaction problems 
by exploring all possible solutions and abandoning those paths that lead to an invalid or 
suboptimal solution. 

It's a depth-first search approach where decisions are made step-by-step, and if a path fails, the 
algorithm "backtracks" to try a different choice. 

껩 How Backtracking Works: 

1. Choose an option. 

2. Recur to see if this leads to a solution. 

3. If it doesn't, undo the choice (backtrack) and try another option. 

虌虇虈虉虊虋 Significance in Algorithm Design: 

 Solves problems with combinatorial complexity where brute-force would be too slow. 

 Helps in finding all or best possible solutions. 

 Efficient when combined with pruning (i.e., skipping impossible paths early). 

궀궔궂궃 Common Problems Solved by Backtracking: 

 N-Queens Problem 

 Sudoku Solver 

 Graph Coloring 

 Hamiltonian Cycle 

 Subset Sum / Combinatorial Optimization 

꺎꺌꺍 Difference from Other Algorithmic Techniques: 

Feature Backtracking 
Divide & 
Conquer 

Dynamic 
Programming 

Greedy Method 

Exploration 
Tries all possible 
options 

Divides into 
independent 
subproblems 

Stores and reuses 
solutions 

Picks best local 
solution 

Recursive? 
Yes (depth-first 
search) 

Yes Yes Not necessarily 



Feature Backtracking 
Divide & 
Conquer 

Dynamic 
Programming 

Greedy Method 

Optimization 
Type 

Optimal / all 
solutions 

Exact solutions 
Optimal 
substructure 
problems 

Often not optimal 

Use of 
Memory 

Stack (recursive 
calls) 

Stack + merges 
Table 
(memoization) 

Minimal 

Efficiency 
Slower unless 
optimized with 
pruning 

Medium 
Efficient if 
overlapping 
subproblems exist 

Very fast (but may 
not give optimal 
solution) 

What are the characteristics of a good approximation' algorithm? 

1. Performance Guarantee: 
The algorithm provides a known bound on how close the solution is to the optimal 
one. This is often expressed as an approximation ratio or factor. 

2. Polynomial Time Complexity: 
It should run in polynomial time, making it efficient and practical for large inputs. 

3. Simplicity: 
The algorithm should be relatively simple to understand and implement. 

4. Scalability: 
It should work well as the size of the input grows, maintaining reasonable accuracy 
and performance. 

5. Deterministic or Probabilistic Guarantees: 
It either always guarantees a certain quality of solution or does so with high 
probability. 

6. Good Practical Performance: 
Beyond theoretical guarantees, the algorithm should perform well on real-world 
instances. 

7. Robustness: 
It should handle a variety of input types and still provide a good approximation. 

Implement and demonstrate binary search algorithm to find the position of the element 
35 in the array [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Support the statement that an opƟmizaƟon problem cannot be NP-complete whereas a decision 
problem can be NP-complete. 

To support the statement: 

“An opƟmizaƟon problem cannot be NP-complete, whereas a decision problem can be NP-
complete,” 
we need to understand the definiƟons and requirements of NP-completeness. 

1. NP-complete problems 

A problem is NP-complete if: 

 It is in NP (i.e., a yes answer can be verified in polynomial Ɵme). 

 It is NP-hard (i.e., every problem in NP can be reduced to it in polynomial Ɵme). 

But this definiƟon only applies to decision problems. 

 

 

 



2. OpƟmizaƟon problem vs. Decision problem 

 OpƟmizaƟon problem: Asks for the best soluƟon (e.g., shortest path, maximum profit). 
Example: What is the shortest route that visits every city once? (Traveling Salesman Problem 
— OpƟmizaƟon version) 

 Decision problem: Asks a yes/no quesƟon about the soluƟon. 
Example: Is there a route that visits every city once with total distance ≤ k? (Traveling 
Salesman Problem — Decision version) 

3. Why opƟmizaƟon problems cannot be NP-complete 

 VerificaƟon in polynomial Ɵme: To be in NP, a problem must allow verificaƟon of a yes answer 
in polynomial Ɵme. 

 OpƟmizaƟon problems do not have a yes/no answer; they require finding the best among 
many possible answers. 

 Hence, they do not fit into the NP framework, because there's no single answer to verify in 
a yes/no fashion. 

4. But decision problems can be NP-complete 

 They fit the NP-completeness definiƟon: 

o A "yes" soluƟon can be checked quickly (in polynomial Ɵme). 

o Many hard problems reduce to them. 

Conclusion 

An opƟmizaƟon problem cannot be NP-complete because NP-completeness only applies to decision 
problems, which are yes/no quesƟons. OpƟmizaƟon problems are oŌen NP-hard but not NP-
complete, because they don’t fall within the NP class due to their output format 

 

a. Analyse and outline the difference between dynamic programming and backtracking. (6 marks) 

Difference Between Dynamic Programming and Backtracking 

Aspect Dynamic Programming (DP) Backtracking 

Purpose 

Solves problems by breaking them 
into overlapping subproblems and 
storing results to avoid 
recomputaƟon. 

Explores all possible soluƟons by trying out 
all opƟons and discarding invalid ones. 

Approach 
BoƩom-up or top-down with 
memoizaƟon; builds soluƟons from 
smaller subproblems. 

Top-down; incrementally builds candidates 
and abandons those that fail constraints. 

   



Aspect Dynamic Programming (DP) Backtracking 

OpƟmal 
Substructure 

Requires the problem to have opƟmal 
substructure property (opƟmal 
soluƟon composed of opƟmal 
subsoluƟons). 

Does not necessarily require opƟmal 
substructure; explores all paths. 

Overlapping 
Subproblems 

Efficiently handles overlapping 
subproblems by caching intermediate 
results. 

Does not reuse previously computed 
soluƟons; may recompute subproblems 
repeatedly. 

Use case 
Mainly used for opƟmizaƟon 
problems (e.g., shortest path, 
knapsack). 

Used for constraint saƟsfacƟon problems 
and combinatorial search (e.g., puzzles, 
permutaƟons). 

Time 
complexity 

Generally polynomial (if the problem 
has limited subproblems). 

PotenƟally exponenƟal, as it tries all 
possibiliƟes unless pruned. 

Example 
problems 

Fibonacci series, matrix chain 
mulƟplicaƟon, knapsack problem. 

N-Queens, Sudoku solver, generaƟng 
permutaƟons/combinaƟons. 

 

Solve these quesƟons by rivision of discrete mathemaƟcs, you can go through the notes of discrete 
mathemaƟcs and rivision the recurrence relaƟon part, not a big deal, you know, you can go through 
only basics and you will be able to solve these quesƟons. 

 


